Client Protocol
Client Protocol
The wire protocol used to communicate between the NATS server and clients is a simple, text-based publish/subscribe style protocol. Clients connect to and communicate with nats-server
(the NATS server) through a regular TCP/IP socket using a small set of protocol operations that are terminated by a new line.
Unlike traditional messaging systems that use a binary message format that require an API to consume, the text-based NATS protocol makes it easy to implement clients in a wide variety of programming and scripting languages. In fact, refer to the topic NATS Protocol Demo to play with the NATS protocol for yourself using telnet.
The NATS server implements a zero allocation byte parser that is fast and efficient.
Protocol conventions
Control Line with Optional Content: Each interaction between the client and server consists of a control, or protocol, line of text followed, optionally by message content. Most of the protocol messages don't require content, only PUB
, MSG
, HPUB
, and HMSG
include payloads.
Field Delimiters: The fields of NATS protocol messages are delimited by whitespace characters (space) or (tab). Multiple whitespace characters will be treated as a single field delimiter.
Newlines: NATS uses ␍
followed by ␊
(␍␊
, 0x0D0A
) to terminate protocol messages. This newline sequence is also used to mark the end of the message payload in PUB
, MSG
, HPUB
, and HMSG
protocol messages.
Subject names: Subject names, including reply subject names, are case-sensitive and must be non-empty alphanumeric strings with no embedded whitespace. All UTF-8 characters except spaces/tabs and separators which are .
and >
are allowed. Subject names can be optionally token-delimited using the dot character (.
), e.g.:
FOO
, BAR
, foo.bar
, foo.BAR
, FOO.BAR
and FOO.BAR.BAZ
are all valid subject names
FOO. BAR
, foo. .bar
andfoo..bar
are not valid subject names
A subject is comprised of 1 or more tokens. Tokens are separated by .
and can be any non whitespace UTF-8 character. The full wildcard token >
is only valid as the last token and matches all tokens past that point. A token wildcard, *
matches any token in the position it was listed. Wildcard tokens should only be used in a wildcard capacity and not part of a literal token.
Character Encoding: Subject names should be UTF-8 compatible.
Wildcards: NATS supports the use of wildcards in subject subscriptions.
The asterisk character (
*
) matches a single token at any level of the subject.The greater than symbol (
>
), also known as the full wildcard, matches one or more tokens at the tail of a subject, and must be the last token. The wildcarded subjectfoo.>
will matchfoo.bar
orfoo.bar.baz.1
, but notfoo
.Wildcards must be a separate token (
foo.*.baz
orfoo.>
are syntactically valid;foo*.bar
,f*o.b*r
andfoo>
are not)
For example, the wildcard subscriptions foo.*.quux
and foo.>
both match foo.bar.quux
, but only the latter matches foo.bar.baz
. With the full wildcard, it is also possible to express interest in every subject that may exist in NATS: sub > 1
, limited of course by authorization settings.
Protocol messages
The following table briefly describes the NATS protocol messages. NATS protocol operation names are case insensitive, thus SUB foo 1␍␊
and sub foo 1␍␊
are equivalent.
Click the name to see more detailed information, including syntax:
OP Name | Sent By | Description |
---|---|---|
Server | Sent to client after initial TCP/IP connection | |
Client | Sent to server to specify connection information | |
Client | Publish a message to a subject, with optional reply subject | |
Client | Publish a message to a subject including NATS headers, with optional reply subject | |
Client | Subscribe to a subject (or subject wildcard) | |
Client | Unsubscribe (or auto-unsubscribe) from subject | |
Server | Delivers a message payload to a subscriber | |
Server | Delivers a message payload to a subscriber with NATS headers | |
Both | PING keep-alive message | |
Both | PONG keep-alive response | |
Server | Acknowledges well-formed protocol message in | |
Server | Indicates a protocol error. May cause client disconnect. |
The following sections explain each protocol message.
INFO
Description
A client will need to start as a plain TCP connection, then when the server accepts a connection from the client, it will send information about itself, the configuration and security requirements necessary for the client to successfully authenticate with the server and exchange messages.
When using the updated client protocol (see CONNECT
below), INFO
messages can be sent anytime by the server. This means clients with that protocol level need to be able to asynchronously handle INFO
messages.
Syntax
INFO {"option_name":option_value,...}␍␊
The valid options are as follows, encoded as JSON:
name | description | type | presence |
---|---|---|---|
| The unique identifier of the NATS server. | string | always |
| The name of the NATS server. | string | always |
| The version of NATS. | string | always |
| The version of golang the NATS server was built with. | string | always |
| The IP address used to start the NATS server, by default this will be | string | always |
| The port number the NATS server is configured to listen on. | int | always |
| Whether the server supports headers. | bool | always |
| Maximum payload size, in bytes, that the server will accept from the client. | int | always |
| An integer indicating the protocol version of the server. The server version 1.2.0 sets this to | int | always |
| The internal client identifier in the server. This can be used to filter client connections in monitoring, correlate with error logs, etc... | uint64 | optional |
| If this is true, then the client should try to authenticate upon connect. | bool | optional |
| If this is true, then the client must perform the TLS/1.2 handshake. Note, this used to be | bool | optional |
| If this is true, the client must provide a valid certificate during the TLS handshake. | bool | optional |
| If this is true, the client can provide a valid certificate during the TLS handshake. | bool | optional |
| List of server urls that a client can connect to. | [string] | optional |
| List of server urls that a websocket client can connect to. | [string] | optional |
| If the server supports Lame Duck Mode notifications, and the current server has transitioned to lame duck, | bool | optional |
| The git hash at which the NATS server was built. | string | optional |
| Whether the server supports JetStream. | bool | optional |
| The IP of the server. | string | optional |
| The IP of the client. | string | optional |
| The nonce for use in CONNECT. | string | optional |
| The name of the cluster. | string | optional |
| The configured NATS domain of the server. | string | optional |
connect_urls
The connect_urls
field is a list of urls the server may send when a client first connects, and when there are changes to server cluster topology. This field is considered optional, and may be omitted based on server configuration and client protocol level.
When a NATS server cluster expands, an INFO
message is sent to the client with an updated connect_urls
list. This cloud-friendly feature asynchronously notifies a client of known servers, allowing it to connect to servers not originally configured.
The connect_urls
will contain a list of strings with an IP and port, looking like this: "connect_urls":["10.0.0.184:4333","192.168.129.1:4333","192.168.192.1:4333"]
Example
Below you can see a sample connection string from a telnet connection to the demo.nats.io
site.
CONNECT
Description
The CONNECT
message is the client version of the INFO
message. Once the client has established a TCP/IP socket connection with the NATS server, and an INFO
message has been received from the server, the client may send a CONNECT
message to the NATS server to provide more information about the current connection as well as security information.
Syntax
CONNECT {"option_name":option_value,...}␍␊
The valid options are as follows, encoded as JSON:
name | description | type | required |
---|---|---|---|
| Turns on | bool | true |
| Turns on additional strict format checking, e.g. for properly formed subjects. | bool | true |
| Indicates whether the client requires an SSL connection. | bool | true |
| Client authorization token. | string | if |
| Connection username. | string | if |
| Connection password. | string | if |
| Client name. | string | false |
| The implementation language of the client. | string | true |
| The version of the client. | string | true |
| Sending | int | false |
| If set to | bool | false |
| In case the server has responded with a | string | if |
| The JWT that identifies a user permissions and account. | string | false |
| bool | false | |
| Whether the client supports headers. | bool | false |
| The public NKey to authenticate the client. This will be used to verify the signature ( | string | false |
Example
Here is an example from the default string of the Go client:
Most clients set verbose
to false
by default. This means that the server should not confirm each message it receives on this connection with a +OK
back to the client.
PUB
Description
The PUB
message publishes the message payload to the given subject name, optionally supplying a reply subject. If a reply subject is supplied, it will be delivered to eligible subscribers along with the supplied payload. Note that the payload itself is optional. To omit the payload, set the payload size to 0, but the second CRLF is still required.
Syntax
PUB <subject> [reply-to] <#bytes>␍␊[payload]␍␊
where:
name | description | type | required |
---|---|---|---|
| The destination subject to publish to. | string | true |
| The reply subject that subscribers can use to send a response back to the publisher/requestor. | string | false |
| The payload size in bytes. | int | true |
| The message payload data. | string | false |
Example
To publish the ASCII string message payload "Hello NATS!" to subject FOO:
PUB FOO 11␍␊Hello NATS!␍␊
To publish a request message "Knock Knock" to subject FRONT.DOOR with reply subject JOKE.22:
PUB FRONT.DOOR JOKE.22 11␍␊Knock Knock␍␊
To publish an empty message to subject NOTIFY:
PUB NOTIFY 0␍␊␍␊
HPUB
Description
The HPUB
message is the same as PUB
but extends the message payload to include NATS headers. Note that the payload itself is optional. To omit the payload, set the total message size equal to the size of the headers. Note that the trailing CR+LF is still required.
NATS headers are similar, in structure and semantics, to HTTP headers as name: value
pairs including supporting multi-value headers. Headers can be mixed case and NATS will preserve case between message publisher and message receiver(s). See also ADR-4 NATS Message Headers.
Syntax
HPUB <subject> [reply-to] <#header bytes> <#total bytes>␍␊[headers]␍␊␍␊[payload]␍␊
where:
name | description | type | required |
---|---|---|---|
| The destination subject to publish to. | string | true |
| The reply subject that subscribers can use to send a response back to the publisher/requestor. | string | false |
| The size of the headers section in bytes including the | int | true |
| The total size of headers and payload sections in bytes. | int | true |
| Header version | string | false |
| The message payload data. | string | false |
Example
To publish the ASCII string message payload "Hello NATS!" to subject FOO with one header Bar with value Baz:
HPUB FOO 22 33␍␊NATS/1.0␍␊Bar: Baz␍␊␍␊Hello NATS!␍␊
To publish a request message "Knock Knock" to subject FRONT.DOOR with reply subject JOKE.22 and two headers:
HPUB FRONT.DOOR JOKE.22 45 56␍␊NATS/1.0␍␊BREAKFAST: donut␍␊LUNCH: burger␍␊␍␊Knock Knock␍␊
To publish an empty message to subject NOTIFY with one header Bar with value Baz:
HPUB NOTIFY 22 22␍␊NATS/1.0␍␊Bar: Baz␍␊␍␊␍␊
To publish a message to subject MORNING MENU with one header BREAKFAST having two values and payload "Yum!"
HPUB MORNING.MENU 47 51␍␊NATS/1.0␍␊BREAKFAST: donut␍␊BREAKFAST: eggs␍␊␍␊Yum!␍␊
SUB
Description
SUB
initiates a subscription to a subject, optionally joining a distributed queue group.
Syntax
SUB <subject> [queue group] <sid>␍␊
where:
name | description | type | required |
---|---|---|---|
| The subject name to subscribe to. | string | true |
| If specified, the subscriber will join this queue group. | string | false |
| A unique alphanumeric subscription ID, generated by the client. | string | true |
Example
To subscribe to the subject FOO
with the connection-unique subscription identifier (sid) 1
:
SUB FOO 1␍␊
To subscribe the current connection to the subject BAR
as part of distribution queue group G1
with sid 44
:
SUB BAR G1 44␍␊
UNSUB
Description
UNSUB
unsubscribes the connection from the specified subject, or auto-unsubscribes after the specified number of messages has been received.
Syntax
UNSUB <sid> [max_msgs]␍␊
where:
name | description | type | required |
---|---|---|---|
| The unique alphanumeric subscription ID of the subject to unsubscribe from. | string | true |
| A number of messages to wait for before automatically unsubscribing. | int | false |
Example
The following examples concern subject FOO
which has been assigned sid 1
. To unsubscribe from FOO
:
UNSUB 1␍␊
To auto-unsubscribe from FOO
after 5 messages have been received:
UNSUB 1 5␍␊
MSG
Description
The MSG
protocol message is used to deliver an application message to the client.
Syntax
MSG <subject> <sid> [reply-to] <#bytes>␍␊[payload]␍␊
where:
name | description | type | presence |
---|---|---|---|
| Subject name this message was received on. | string | always |
| The unique alphanumeric subscription ID of the subject. | string | always |
| The subject on which the publisher is listening for responses. | string | optional |
| Size of the payload in bytes. | int | always |
| The message payload data. | string | optional |
Example
The following message delivers an application message from subject FOO.BAR
:
MSG FOO.BAR 9 11␍␊Hello World␍␊
To deliver the same message along with a reply subject:
MSG FOO.BAR 9 GREETING.34 11␍␊Hello World␍␊
HMSG
Description
The HMSG
message is the same as MSG
, but extends the message payload with headers. See also ADR-4 NATS Message Headers.
Syntax
HMSG <subject> <sid> [reply-to] <#header bytes> <#total bytes>␍␊[headers]␍␊␍␊[payload]␍␊
where:
name | description | type | presence |
---|---|---|---|
| Subject name this message was received on. | string | always |
| The unique alphanumeric subscription ID of the subject. | string | always |
| The subject on which the publisher is listening for responses. | string | optional |
| The size of the headers section in bytes including the | int | always |
| The total size of headers and payload sections in bytes. | int | always |
| Header version | string | optional |
| The message payload data. | string | optional |
Example
The following message delivers an application message from subject FOO.BAR
with a header:
HMSG FOO.BAR 34 45␍␊NATS/1.0␍␊FoodGroup: vegetable␍␊␍␊Hello World␍␊
To deliver the same message along with a reply subject:
HMSG FOO.BAR 9 BAZ.69 34 45␍␊NATS/1.0␍␊FoodGroup: vegetable␍␊␍␊Hello World␍␊
PING/PONG
Description
PING
and PONG
implement a simple keep-alive mechanism between client and server. Once a client establishes a connection to the NATS server, the server will continuously send PING
messages to the client at a configurable interval. If the client fails to respond with a PONG
message within the configured response interval, the server will terminate its connection. If your connection stays idle for too long, it is cut off.
If the server sends a ping request, you can reply with a pong message to notify the server that you are still interested. You can also ping the server and will receive a pong reply. The ping/pong interval is configurable.
The server uses normal traffic as a ping/pong proxy, so a client that has messages flowing may not receive a ping from the server.
Syntax
PING␍␊
PONG␍␊
Example
The following example shows the demo server pinging the client and finally shutting it down.
+OK/ERR
Description
When the verbose
connection option is set to true
(the default value), the server acknowledges each well-formed protocol message from the client with a +OK
message. Most NATS clients set the verbose
option to false
using the CONNECT
message
The -ERR
message is used by the server indicate a protocol, authorization, or other runtime connection error to the client. Most of these errors result in the server closing the connection.
Handling of these errors usually has to be done asynchronously.
Syntax
+OK␍␊
-ERR <error message>␍␊
Some protocol errors result in the server closing the connection. Upon receiving these errors, the connection is no longer valid and the client should clean up relevant resources. These errors include:
-ERR 'Unknown Protocol Operation'
: Unknown protocol error-ERR 'Attempted To Connect To Route Port'
: Client attempted to connect to a route port instead of the client port-ERR 'Authorization Violation'
: Client failed to authenticate to the server with credentials specified in theCONNECT
message-ERR 'Authorization Timeout'
: Client took too long to authenticate to the server after establishing a connection (default 1 second)-ERR 'Invalid Client Protocol'
: Client specified an invalid protocol version in theCONNECT
message-ERR 'Maximum Control Line Exceeded'
: Message destination subject and reply subject length exceeded the maximum control line value specified by themax_control_line
server option. The default is 1024 bytes.-ERR 'Parser Error'
: Cannot parse the protocol message sent by the client-ERR 'Secure Connection - TLS Required'
: The server requires TLS and the client does not have TLS enabled.-ERR 'Stale Connection'
: The server hasn't received a message from the client, including aPONG
in too long.-ERR 'Maximum Connections Exceeded
': This error is sent by the server when creating a new connection and the server has exceeded the maximum number of connections specified by themax_connections
server option. The default is 64k.-ERR 'Slow Consumer'
: The server pending data size for the connection has reached the maximum size (default 10MB).-ERR 'Maximum Payload Violation'
: Client attempted to publish a message with a payload size that exceeds themax_payload
size configured on the server. This value is supplied to the client upon connection in the initialINFO
message. The client is expected to do proper accounting of byte size to be sent to the server in order to handle this error synchronously.
Protocol error messages where the connection remains open are listed below. The client should not close the connection in these cases.
-ERR 'Invalid Subject'
: Client sent a malformed subject (e.g.sub foo. 90
)-ERR 'Permissions Violation for Subscription to <subject>'
: The user specified in theCONNECT
message does not have permission to subscribe to the subject.-ERR 'Permissions Violation for Publish to <subject>'
: The user specified in theCONNECT
message does not have permissions to publish to the subject.
Last updated