CNCF and Synadia Align on Securing the Future of the NATS.io Project. Read the joint press release.
NATS Docs
NATS.ioNATS by ExampleGitHubSlackTwitter
  • Welcome
  • Release Notes
    • What's New!
      • NATS 2.11
      • NATS 2.10
      • NATS 2.2
      • NATS 2.0
  • NATS Concepts
    • Overview
      • Compare NATS
    • What is NATS
      • Walkthrough Setup
    • Subject-Based Messaging
    • Core NATS
      • Publish-Subscribe
        • Pub/Sub Walkthrough
      • Request-Reply
        • Request-Reply Walkthrough
      • Queue Groups
        • Queueing Walkthrough
    • JetStream
      • Streams
      • Source and Mirror Streams
        • Example
      • Consumers
        • Example
      • JetStream Walkthrough
      • Key/Value Store
        • Key/Value Store Walkthrough
      • Object Store
        • Object Store Walkthrough
      • Headers
    • Subject Mapping and Partitioning
    • NATS Service Infrastructure
      • NATS Adaptive Deployment Architectures
    • Security
    • Connectivity
  • Using NATS
    • NATS Tools
      • nats
        • nats bench
      • nk
      • nsc
        • Basics
        • Streams
        • Services
        • Signing Keys
        • Revocation
        • Managed Operators
      • nats-top
        • Tutorial
    • Developing With NATS
      • Anatomy of a NATS application
      • Connecting
        • Connecting to the Default Server
        • Connecting to a Specific Server
        • Connecting to a Cluster
        • Connection Name
        • Authenticating with a User and Password
        • Authenticating with a Token
        • Authenticating with an NKey
        • Authenticating with a Credentials File
        • Encrypting Connections with TLS
        • Setting a Connect Timeout
        • Ping/Pong Protocol
        • Turning Off Echo'd Messages
        • Miscellaneous functionalities
        • Automatic Reconnections
          • Disabling Reconnect
          • Set the Number of Reconnect Attempts
          • Avoiding the Thundering Herd
          • Pausing Between Reconnect Attempts
          • Listening for Reconnect Events
          • Buffering Messages During Reconnect Attempts
        • Monitoring the Connection
          • Listen for Connection Events
          • Slow Consumers
      • Receiving Messages
        • Synchronous Subscriptions
        • Asynchronous Subscriptions
        • Unsubscribing
        • Unsubscribing After N Messages
        • Replying to a Message
        • Wildcard Subscriptions
        • Queue Subscriptions
        • Draining Messages Before Disconnect
        • Receiving Structured Data
      • Sending Messages
        • Including a Reply Subject
        • Request-Reply Semantics
        • Caches, Flush and Ping
        • Sending Structured Data
      • Building Services
      • JetStream
        • JetStream Model Deep Dive
        • Managing Streams and consumers
        • Consumer Details
        • Publishing to Streams
        • Using the Key/Value Store
        • Using the Object Store
      • Tutorials
        • Advanced Connect and Custom Dialer in Go
    • Running Workloads on NATS
      • Getting Started
        • Installing Nex
        • Building a Service
        • Starting a Node
        • Deploying Services
        • Building a Function
        • Deploying Functions
      • Host Services
        • Javascript | V8
      • Nex Internals
        • Architecture Overview
        • Node Process
        • Nex Agent
        • No Sandbox Mode
        • Root File System
        • Control Interface
      • FAQ
  • Running a NATS service
    • Installing, running and deploying a NATS Server
      • Installing a NATS Server
      • Running and deploying a NATS Server
      • Windows Service
      • Flags
    • Environmental considerations
    • NATS and Docker
      • Tutorial
      • Docker Swarm
      • Python and NGS Running in Docker
      • JetStream
      • NGS Leaf Nodes
    • NATS and Kubernetes
    • NATS Server Clients
    • Configuring NATS Server
      • Configuring JetStream
        • Configuration Management
          • NATS Admin CLI
          • Terraform
          • GitHub Actions
          • Kubernetes Controller
      • Clustering
        • Clustering Configuration
        • v2 Routes
        • JetStream Clustering
          • Administration
          • Troubleshooting
      • Super-cluster with Gateways
        • Configuration
      • Leaf Nodes
        • Configuration
        • JetStream on Leaf Nodes
      • Securing NATS
        • Enabling TLS
        • Authentication
          • Tokens
          • Username/Password
          • TLS Authentication
            • TLS Authentication in clusters
          • NKeys
          • Authentication Timeout
          • Decentralized JWT Authentication/Authorization
            • Account lookup using Resolver
            • Memory Resolver Tutorial
            • Mixed Authentication/Authorization Setup
        • Authorization
        • Multi Tenancy using Accounts
        • OCSP Stapling
        • Auth Callout
      • Logging
      • Enabling Monitoring
      • MQTT
        • Configuration
      • Configuring Subject Mapping
      • System Events
        • System Events & Decentralized JWT Tutorial
      • WebSocket
        • Configuration
    • Managing and Monitoring your NATS Server Infrastructure
      • Monitoring
        • Monitoring JetStream
      • Managing JetStream
        • Account Information
        • Naming Streams, Consumers, and Accounts
        • Streams
        • Consumers
        • Data Replication
        • Disaster Recovery
        • Encryption at Rest
      • Managing JWT Security
        • In Depth JWT Guide
      • Upgrading a Cluster
      • Slow Consumers
      • Signals
      • Lame Duck Mode
      • Profiling
  • Reference
    • FAQ
    • NATS Protocols
      • Protocol Demo
      • Client Protocol
        • Developing a Client
      • NATS Cluster Protocol
      • JetStream wire API Reference
    • Roadmap
    • Contributing
  • Legacy
    • nats-account-server
Powered by GitBook
On this page

Was this helpful?

Edit on GitHub
Export as PDF
  1. Using NATS
  2. Developing With NATS
  3. Connecting

Connecting to a Cluster

PreviousConnecting to a Specific ServerNextConnection Name

Last updated 6 months ago

Was this helpful?

When connecting to a cluster, there are a few things to think about.

  • Passing a URL for each cluster member (semi-optional)

  • The connection algorithm

  • The reconnect algorithm (discussed later)

  • Server provided URLs

When a client library first tries to connect it will use the list of URLs provided to the connection options or function. These URLs are usually checked in random order as to not have every client connect to the same server. The first successful connection is used. Randomization can be .

After a client connects to the server, the server may provide a list of URLs for additional known servers. This allows a client to connect to one server and still have other servers available during reconnect.

To ensure the initial connection, your code should include a list of reasonable front line or seed servers. Those servers may know about other members of the cluster, and may tell the client about those members. But you don't have to configure the client to pass every valid member of the cluster in the connect method.

By providing the ability to pass multiple connect options, NATS can handle the possibility of a machine going down or being unavailable to a client. By adding the ability of the server to feed clients a list of known servers as part of the client-server protocol the mesh created by a cluster can grow and change organically while the clients are running.

Note, failure behavior is library dependent, please check the documentation for your client library on information about what happens if the connect fails.

servers := []string{"nats://127.0.0.1:1222", "nats://127.0.0.1:1223", "nats://127.0.0.1:1224"}

nc, err := nats.Connect(strings.Join(servers, ","))
if err != nil {
    log.Fatal(err)
}
defer nc.Close()

// Do something with the connection
Options options = new Options.Builder()
    .server("nats://127.0.0.1:1222,nats://127.0.0.1:1223,nats://127.0.0.1:1224")
    .build();
Connection nc = Nats.connect(options);

// Do something with the connection

nc.close();
const nc = await connect({
    servers: [
      "nats://demo.nats.io:4222",
      "nats://localhost:4222",
    ],
});
// Do something with the connection
doSomething();
// When done close it
await nc.close();
nc = NATS()
await nc.connect(servers=[
   "nats://127.0.0.1:1222",
   "nats://127.0.0.1:1223",
   "nats://127.0.0.1:1224"
   ])

# Do something with the connection

await nc.close()
// dotnet add package NATS.Net
using NATS.Net;

await using var client = new NatsClient("nats://127.0.0.1:1222,nats://127.0.0.1:1223,nats://127.0.0.1:1224");

// It's optional to call ConnectAsync()
// as it will be called when needed automatically
await client.ConnectAsync();
require 'nats/client'

NATS.start(servers: ["nats://127.0.0.1:1222", "nats://127.0.0.1:1223", "nats://127.0.0.1:1224"]) do |nc|
   # Do something with the connection

   # Close the connection
   nc.close
end
natsConnection      *conn      = NULL;
natsOptions         *opts      = NULL;
natsStatus          s          = NATS_OK;
const char          *servers[] = {"nats://127.0.0.1:1222", "nats://127.0.0.1:1223", "nats://127.0.0.1:1224"};

s = natsOptions_Create(&opts);
if (s == NATS_OK)
    s = natsOptions_SetServers(opts, servers, 3);
if (s == NATS_OK)
    s = natsConnection_Connect(&conn, opts);

(...)

// Destroy objects that were created
natsConnection_Destroy(conn);
natsOptions_Destroy(opts);
explicitly disabled